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Abstract

It is shown how homonuclear distances and homonuclear dipolar lattice sums between spin-1/2 nuclei can be measured by a pulsed
solid-state NMR experiment under magic-angle spinning conditions. The presented technique is based on double-quantum coherence
filtering. Instead of measuring a build-up of double-quantum coherence the pulse sequence is designed to dephase double-quantum
coherence. This is achieved by exciting double-quantum coherence either with the help of the through-space dipolar coupling or the
through-bond dipolar coupling while the dephasing relies on the through-space dipolar coupling as selected by a c-encoded pulse
sequence from the C/R symmetry class. Since dephasing curves can be normalized on zero dephasing, it is possible to analyze the initial
dephasing regime and hence determine dipolar lattice sums (effective dipolar couplings) in multiple-spin systems. A formula for the effec-
tive dipolar coupling is derived theoretically and validated by numerical calculations and experiments on crystalline model compounds
for 13C and 31P spin systems. The double-quantum dephasing experiment can be combined with constant-time data sampling to com-
pensate for relaxation effects, consequently only two experimental data points are necessary for a single distance measurement. The phase
cycling overhead for the constant-time experiment is minimal because a short cogwheel phase cycle exists. A 2D implementation is dem-
onstrated on [13C3]alanine.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Spin dynamics in multiple-spin systems are known to be
difficult to describe especially if quantitative information
about the dipolar-interactions is of interest. To reduce
the complexity of this problem only spin-1/2 systems in sol-
id-state NMR will be considered here. The first successful
approach to treat multiple spin effects is the method of
moments developed by van Vleck [1] which links the line-
shape function of a static sample with lattice sums of the
dipolar coupling constants. Many articles have appeared
since studying the structure and dynamics [2,3] of pow-
dered samples by observing the changes in the moments
of the lineshape.
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Obviously it is tempting to devise similar experiments
which work under magic-angle sample-spinning conditions
so distance information can be used to characterize the
connections between all resolved resonances. For spins
with only heteronuclear dipolar couplings this is possible
by an analysis of the initial part of the REDOR curve
[4]. The initial part of the REDOR curve [5] is independent
of the relative orientations of the through-space
dipolar orientations and is a function of the individual lat-
tice sums of dipolar couplings. To get quantifiable results it
can be important to suppress the homonuclear dipolar cou-
pling while recoupling the heteronuclear dipolar coupling
as for example in PRESTO [6] or C-REDOR [7]
experiments.

In the case of the homonuclear dipolar coupling many
pulse methods [8–10] have been developed to isolate the
homonuclear dipolar interaction. Some of these methods
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have already been applied to multiple-spin systems [11–15].
A rather successful subclass of experiments are double-
quantum (DQ) filtered experiments which can be used to
encode the dipolar interaction either by rotor phase modu-
lation [16,17] or by varying the double-quantum/zero-
quantum conversion times [18,19]. Rotor-phase encoded
experiments were mostly applied to systems with small
chemical shift anisotropies like 1H containing samples
[20,21] and 29Si in silicates [22]. Double-quantum/zero-
quantum conversion type experiments profit from the high
transfer efficiencies which can be achieved by c-encoded
pulse sequences for example from the R/C-symmetry clas-
ses [23]. One aim of DQ pulse sequence design is suppres-
sion of the chemical shift while maintaining a high
scaling-factor for the dipolar interaction. Again solutions
can be found in the class of R/C-sequences [23].

The analysis of the spin-dynamics of a multiple-spin
system under such a DQ Hamiltonian is difficult [24–
26]. For 1H NMR it was suggested that the linewidth
under magic-angle-spinning conditions can be analyzed
in terms of dipolar lattice sums [27]. In DQ/ZQ conver-
sion type experiments (ZQ for zero-quantum) the initial
regime of a DQ build-up curve does not depend on the
relative orientations of the dipolar interactions, which
opens the possibility to measure a well defined dipolar lat-
tice value for every resolved DQ coherence [28,29,13].
However a numerically stable analysis of the experimental
data without normalization [13] of the DQ intensities is
critical and can be hampered by relaxation and interfer-
ence from J-couplings.

The pulse sequences presented here are based on the
DQ/ZQ conversion approach. Instead of sampling the
build up of DQ coherence [30] the pulse sequences are
designed to follow the dephasing of DQ coherence under
a DQ Hamiltonian. DQ coherence can either be excited
with the help of the through-space or the through-bond
dipolar interaction as in the INADEQUATE experiment
[31,32]. Hence it is possible to make use of the through-
space dipolar coupling and the through-bond dipolar cou-
pling in a single experiment which resembles the situation
in the double-filter DQ constant-time experiment [33].
Compensation for relaxation and experimental imperfec-
tions can be achieved following the ideas of DQ con-
stant-time NMR [33–36].

The article is organized into several sections. In Section
2, the pulse sequences are described in detail, including
phase cycling tables and pulse timings. In Section 3, the
spin-dynamics of double-quantum dephasing are treated
theoretically and the connections to dipolar lattice sums
and the degree of isotopic labelling are established. In the
following section experimental results are presented and
discussed.

2. Pulse-sequences

Pulse sequences for double-quantum coherence
dephasing (Double-Quantum Dephasing, DoDe) are
sketched out in Fig. 1. The pulse sequences are similar
to ordinary zero-quantum filtered DQ NMR. In a first
step DQ coherence is created by a pulse block generat-
ing a DQ average Hamiltonian either based on the
through-bond or on the through-space dipolar interac-
tion. In this contribution in the theoretical part only
c-encoded pulse sequences from the C/R symmetry clas-
ses are considered for the latter case. All experimental
results were obtained with the PostC7 sequence [19],
i.e., C71

2 with the C-element 900–360180–2700. The J-cou-
pling based sequence is using the echo-type hard pulse
excitation of the liquid-state INADEQUATE [32] exper-
iment. The three pulse 900–sJ

DQ=2–18090–sJ
DQ=2–900

sequence will henceforth be called ‘‘INADEQUATE
block,’’ where xy describes a pulse with a flip angle of x

degrees and a pulse phase of y degrees. The timing sJ
DQ

has to be chosen such that the centres of the 90� and 180�
pulses are separated by an integer multiple of the rotor
period.

The DQ excitation is followed by one (pulse sequence
B) or two dephasing periods (pulse sequence A and C)
using a pulse sequence from the C/R symmetry class,
here PostC7 [19]. The PostC7 sequence interconverts
elements of the density matrix with even coherence
orders, for short dephasing periods s1 and s2 mostly
DQ and ZQ coherences. Coherence transfer pathways
are suppressed by the phase cycle if the PostC7
sequence has induced a change in coherence order after
the dephasing periods. In the constant-time experiments
(pulse sequence A and C) this procedure is repeated
twice.

After the dephasing period the DQ coherence is recon-
verted to zero-quantum coherence again using the INAD-
EQUATE block or a C-/R-type pulse sequence,
respectively. The length of the dephasing times s1, s2 and
the excitation and reconversion times sexc and srecon can
be adjusted by repeating blocks of complete C71

2 cycles sev-
eral times. Consequently the pulse sequence and the sam-
pling of the DQ dephasing curves is done in a rotor
synchronized manner. Finally a 90� pulse generates trans-
verse magnetization.

Coherence pathway selection was achieved by phase
cycling the pulse phases only, thus keeping the receiver
phase constant. The constant-time DQ dephasing
sequences consist of five blocks excitation, dephasing-I,
dephasing-II, reconversion, and read pulse. To the
phases of all pulses in each block a phase /i

block is add-
ed, where i refers to the ith experiment. The five phases
/i

exc, /i
dephasing-I, /i

dephasing-II;/
i
recon and /i

read were chosen
according to a cogwheel phase cycle [37]. The shortest
possible cogwheel phase cycle requires at least 36 exper-
iments to be added up. The differences in winding
numbers are then Dm12 = 3, Dm23 = 3, Dm34 = 3, and
Dm45 = 1 for the consecutive, independently cycled
blocks, which amounts to a Cog36(8,11,14,17,18;0).
Thus the pulse phase increments /i

block in the ith exper-
iment are:
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/i
exc
 0.0
 80.0
 160.0
 240.0
 320.0
 40.0
 120.0
 200.0
 280.0
 0.0
 80.0
 160.0
 240.0
 320.0
 40.0
 120.0
 200.0
 280.0
/i
dephasing-I
 0.0
 110.0
 220.0
 330.0
 80.0
 190.0
 300.0
 50.0
 160.0
 270.0
 20.0
 130.0
 240.0
 350.0
 100.0
 210.0
 320.0
 70.0
/i
dephasing-II
 0.0
 140.0
 280.0
 60.0
 200.0
 340.0
 120.0
 260.0
 40.0
 180.0
 320.0
 100.0
 240.0
 20.0
 160.0
 300.0
 80.0
 220.0
/i
recon
 0.0
 170.0
 340.0
 150.0
 320.0
 130.0
 300.0
 110.0
 280.0
 90.0
 260.0
 70.0
 240.0
 50.0
 220.0
 30.0
 200.0
 10.0
/i
read
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
i
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36

/i

exc
 0.0
 80.0
 160.0
 240.0
 320.0
 40.0
 120.0
 200.0
 280.0
 0.0
 80.0
 160.0
 240.0
 320.0
 40.0
 120.0
 200.0
 280.0

/i

dephasing-I
 180.0
 290.0
 40.0
 150.0
 260.0
 10.0
 120.0
 230.0
 340.0
 90.0
 200.0
 310.0
 60.0
 170.0
 280.0
 30.0
 140.0
 250.0

/i

dephasing-II
 0.0
 140.0
 280.0
 60.0
 200.0
 340.0
 120.0
 260.0
 40.0
 180.0
 320.0
 100.0
 240.0
 20.0
 160.0
 300.0
 80.0
 220.0

/i

recon
 180.0
 350.0
 160.0
 330.0
 140.0
 310.0
 120.0
 290.0
 100.0
 270.0
 80.0
 250.0
 60.0
 230.0
 40.0
 210.0
 20.0
 190.0

/i

read
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
 0.0
 180.0
The phase cycle selects the coherence transfer pathways
0 fi +2 fi +2 fi +2 fi 0 fi �1 and 0 fi �2 fi �2 fi
�2 fi 0 fi �1 as indicated in Fig. 1 (pulse sequences A
and C), neglecting all coherence pathways which involve
coherence orders |p| > 2. An additional 4-step phase cycle
realizes DC offset and quadrature image compensation.
The phase cycling becomes significantly shorter through
the choice of the cogwheel phase cycle. A nested phase
cycle which would select the same coherence transfer path-
ways would need 240 steps.
via J-
erences
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For reasons of convenience the DQ dephasing experi-
ment with a single dephasing period (pulse sequence B,
Fig. 1) was realized with the same pulse sequence and phase
cycling, only one of the dephasing periods was set to zero.

3. Theory

3.1. Two-spin system

The double-quantum filtered intensity can be written as a
function of the dephasing time s, throughout which the dou-
ble-quantum Hamiltonian is applied (pulse sequence B,
Fig. 1). The contribution of different crystallites in a powder
to the filtered signal is almost independent of their orienta-
tion if an INADEQUATE experiment under fast spinning
conditions is used for the double-quantum to zero-quantum
conversion steps. Consequently the analysis of spin-dynam-
ics for the complete sequence is significantly simplified. On
the other hand the isotropic approximation requires a fast
spinning-regime to suppress the anisotropic parts of chemi-
cal shift and the through-space dipolar coupling during the
INADEQUATE blocks of the pulse experiment.

With the first-order effective Hamiltonian �H
ð1Þ
lmkl of a c-

encoded C- or R-pulse sequence [23,38,26] the filtered dou-
ble-quantum intensity SDQ becomes

SDQðsÞ /
1

2
þ 1

2
cosðjx12jsÞ

� �
ð1Þ

for a single spin-pair where Æ� � �æ denotes the powder aver-
age. The frequency x12 refers to the scaled dipolar coupling
constant in the first order average Hamiltonian �H

ð1Þ
lmkl and

its magnitude |x12| to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x12x�12

p
. In a multiple spin system

it is the sum of the double-quantum terms obtained from
all pairwise combinations of nuclei. For a PostC7 pulse
train it takes the form

�H
ð1Þ
lmkl ¼

Xjk

j 6¼k

xjkT jk
2�2 þ x�jkT jk

22

� �
; ð2Þ

where T jk
2�2 are second rank spin operators for the interac-

tion between spins j and k and where the terms
(l,m,k,l) = (2,�1,2,2) and (2, 1,2,�2) are selected by the
pulse sequence symmetry (here C71

2). Here l and m are
space rank and component while k and l refer to spin rank
and component of the recoupled interaction. Details are
described in the literature [30]. The factor xjk is propor-
tional to the product of the complex scaling factor jlmkl

[26] and the dipolar coupling constant mdip

mdip ¼ �
l0

8p2
c2�h=d3; ð3Þ

where d is the internuclear distance and c is the magnetogyric
ratio. Explicitly the frequency xjk can be written out as [26]

xjk ¼
ffiffiffiffiffi
24
p

mdippjlmkleiðaRLþcMRÞ

�
Xþ2

m¼�2

d2
0mðb

jk
PMÞd2

m�1ðbMRÞe�imðcPMþaMRÞ ð4Þ
assuming rotorsynchronized application and a zero start-
ing phase of the rf-pulse train. Here the Euler angles
aPM, bPM, cPM describe a rotation from the principle axis
frame of the homonuclear dipolar interaction to the molec-
ular frame, the Euler angles aMR, bMR, cMR the rotation
from the molecular frame to the rotor frame and Euler an-
gles aRL, bRL, cRL describe a rotation from the rotor to the
laboratory frame. For a single dipolar interaction the
molecular frame may be chosen such that the molecular
frame and the principal axes frame coincide and the rele-
vant Euler angles aPM, bPM, cPM become zero. For this case
Eq. (4) simplifies to

xjk ¼ �3pmdipj2�122 sinð2bMRÞei aRLþcMRð Þ. ð5Þ
Ideally, a DQ dephasing experiment can be performed

with a single variable dephasing time. Then a dipolar cou-
pling constant can be extracted from the observed oscilla-
tions of DQ intensity as a function of dephasing time in
a similar way as for a double-quantum build-up curve.
The main advantage of a dephasing technique is that it
can be normalized which means that short dephasing times
can be analyzed for dipolar couplings. Normalization can
be achieved by taking the quotient of the dephased intensi-
ty SDQ (s) over the intensity SDQ (0) of an experiment with-
out dephasing. The ratio can be fitted with a dipolar
coupling constant. Knowledge about the isotropic J-cou-
pling constant is not necessary, because its influence onto
DQ-dephasing is negligible in most cases. On the other
hand relaxation can be suspected to corrupt the experiment
because it acts as an additional mechanism which lowers
the DQ filtered intensity.

Relaxation effects can often be minimized by using a
constant-time setup [33–35]. For this purpose the dephas-
ing block is split into two separate periods s1 and s2. The
dephasing of DQ-coherence after a total dephasing time
stotal does not depend on the choice of s1 and s2 as long
as the overall dephasing time is kept constant
(s1 + s2 = stotal, see pulse-sequence A, Fig. 1), if the decay
is governed by a simple exponential relaxation function.
The decay caused by the dipole–dipole interaction however
does depend on the choice of s1 and s2. Normalization can
be achieved by taking the ratio of two experiments with
equal total dephasing time stotal. To achieve maximum dif-
ference of their double-quantum filtered intensities SDQ the
dephasing periods s1 and s2 were chosen as (s1 = 0,
s2 = stotal) and ðs1 ¼ stotal

2
; s2 ¼ stotal

2
Þ.

SDQðs1 ¼ 0; s2 ¼ stotalÞ
SDQðs1 ¼ stotal

2
; s2 ¼ stotal

2
Þ

¼
1 � 1

2
þ 1

2
cos x12j jstotalð Þ

� �	 

1
2
þ 1

2
cos x12j j stotal

2

� �� �
1
2
þ 1

2
cos x12j j stotal

2

� �� �	 
 . ð6Þ

Only two experimental values are necessary to determine
a single dipolar coupling. In analogy with double-quantum
constant-time experiments [35] there exists an upper limit
jmmax

dip j up to which dipolar coupling constants can unambig-
uously be characterized for a given dephasing period stotal



190 J. Schmedt auf der Günne / Journal of Magnetic Resonance 180 (2006) 186–196
and a given scaling factor j. The upper limit jmmax
dip j can be

approximated from the first minimum in the integrated
Taylor expansion to the 6th order of the above formula
as jmmax

dip j � 0:3558
stotal jjj

. From the same expansion (see supporting
information) a good numerical approximation of the
dephasing curve with a given dipolar coupling constant mdip

and a given scaling factor j can be calculated. Alternatively
the following integral can be evaluated numerically:

SCT
DQðsÞ ¼

SDQðs1 ¼ 0; s2 ¼ stotalÞ
SDQðs1 ¼ stotal

2
; s2 ¼ stotal

2
Þ

¼
R p

0
ð1

2
þ 1

2
cosð3jjjmdippstotal sinð2bMRÞÞ sinðbMRÞdbMRR p

0
1
2
þ 1

2
cos 3

2
jj jmdippstotal sinð2bMRÞ

� �� �2
sinðbMRÞdbMR

.

ð7Þ

The quality of the expansion can be assessed from com-
parison with the numerical integration of the analytic for-
mula based on an averaged Hamiltonian and from
comparison with the exact numerical calculations of the
spin-dynamics in a two-spin system (see Fig. 2).

3.2. Multiple-spin system

The effective Hamiltonian for a huge spin-1/2 system
consists of a sum of double-quantum terms. The double-
quantum coherence I±iI±j of the nuclei i and j in a multi-
ple-spin system will dephase under the double-quantum
averaged Hamiltonian with contributions from all spin-
pairs in the multiple-spin system.

Contributions of different spin-pairs with one common
spin do not commute which each other in general. Hence
it is not possible to apply them consecutively to the density
matrix as the individual heteronuclear dipolar interactions
in a REDOR experiment [39]. The oscillation of a double-
quantum build-up curve carries information not only
about the dipolar coupling constants but also about their
relative orientation [24]. In the Baker–Campbell–Haus-
sdorff the orientational dependence appears in form of
the commutators in the series expansion.
τ/ms

S
C

T
D

Q

0

 0.2

 0.4

 0.6

 0.8

1

0 1 2 3 4 5 6 7 8

Fig. 2. The constant-time double-quantum dephasing ratio SCT
DQ as a func

INADEQUATE block (right diagram, pulse sequence A in Fig. 1) or PostC7
squares refer to numerically exact 2-spin simulations for a dipolar coupling c
expansion to the 10th order (see supporting material) of the dephasing function
functions in Eqs. (7) and (16).
eiHAseiHBs ¼ eiðHAþHBÞs�1
2 HA;HB½ �s2þ���. ð8Þ

For short conversion times the Baker–Campbell–Haus-
sdorff equation may be truncated after the first term,
because all commutators are scaled by higher powers of s.

eiHAseiHBs � eiðHAþHBÞs. ð9Þ
Short in this context means 1/s	 Hii. In this approx-

imation the double-quantum average Hamiltonian can
be split into factors of individual two-spin double-quan-
tum terms. There are three categories of dephasing by
two-spin double-quantum terms: terms I±kI±l with no
spin in common with the indirectly observed double-
quantum coherence I±iI±j, terms I±iI±k with one spin
in common (Eq. (10)) and terms I±iI±k with two spins
in common (Eq. (11)) as discussed in the section
‘‘two-spin system’’ above. Since double-quantum terms
for coherences with no spin in common commute with
I±iI±j, there are only two types of contributions left,
which have an impact onto the initial part of the
dephasing curve:

IþiIþj ��������!xjk T jk
2�2
þx�jkT jk

22
cos

1

2
jxjkjs

� 

IþiIþj; ð10Þ

IþiIþj ��������!xijT ij
2�2
þx�ijT ij

22
cos2 1

2
jxijjs

� 

IþiIþj. ð11Þ

For short dephasing times the intensity SDQ (s) is
proportional to the product of the contributions of all
dephasing double-quantum terms. All irrelevant constant
prefactors can be removed by normalizing to the filtered
signal intensity SDQ at s = 0 (pulse sequence B in
Fig. 1).

SDQðsÞ=SDQð0Þ ¼
Y
ij;i6¼j

cos
1

2
xijðaMR; bMR; cMRÞ
�� ��s� 
* +

.

ð12Þ
A cosine expansion cos x ¼ 1� x2

2!
þ x4

4!
þ � � � results in
τ/ms

0
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 0.4

 0.6

 0.8

1

0 1 2 3 4 5 6 7 8

tion of the dephasing time stotal using PostC7 for dephasing and an
(left diagram, pulse sequence C in Fig. 1) for DQ generation, respectively;
onstant of mdip = �436 Hz, the dashed line was obtained using the series
s and the solid line was obtained via numerical integration of the dephasing
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SDQðsÞ=SDQð0Þ

¼ 1

8p2

Z 2p

0

daMR

Z p

0

sin bMR dbMR

�
Z 2p

0

dcMR

Y
ij

1� 1

8
xijðaMR;bMR; cMRÞ
�� ��s� �2 þ � � �

� �
.

ð13Þ

The expansion is truncated after the second term (in the
limit x
 1) and the product is expanded. Again for short
dephasing times all terms with an order higher than 2 are
neglected and for the same reason spin-products like
(xij(aij,bij,cij)s)2(xkl(akl,bkl,ckl)s)2. A simple sum of squared
dipolar couplings is factored out

SDQðsÞ=SDQð0Þ �
1

8p2

Z 2p

0

daMR

Z p

0

sin bMR dbMR

�
Z 2p

0

dcMR 1� 1

8
s2
X

ij

xijðaMR; bMR; cMRÞ
�� ��2" #

. ð14Þ

The formula is an approximation of the beginning of the
dephasing curve. The integral can readily be evaluated
because there are no cross products of different pairwise
dipolar couplings, which would make the dephasing curve
dependent on relative orientations. The absence of cross
products also removes the dependence on the Euler angles
relating the individual dipolar interactions in the principal
axis and the molecular frame. Using Eqs. (3) and (4) a sum
of squared dipole–dipole coupling constants can be fac-
tored out, which determines how quickly double-quantum
coherence is being dephased.

The experimentally observable quantity extrapolated to
zero dephasing time is equivalent to a dipolar coupling
constant meff (alias effective dipolar coupling) in a fictitious
Fig. 3. Effect of multiple-spins on effective dipolar coupling constants measur
meff (simulation) in multiple spin systems as a function of dephasing time sdeph

right: the effective dipolar coupling constant meff (sum) calculated with formula
determined via the dephasing ratio from numerically accurate simulations of t
Ag7P3S11 including all isotropic chemical shifts, J-couplings and all dipole–di
structure).
2-spin system. The effective dipolar coupling constant can
quickly be calculated from a sum of squared dipolar cou-
pling constants. It is well defined for any given crystal
structure by the internuclear distances of the dipolarly cou-
pled nuclei.

meff ¼ �
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnuclei

1i;i6¼1

m2
1i þ

Xnuclei

2i;i 6¼2

m2
2i

vuut . ð15Þ

The effective dipolar coupling is converging quickly
with distance. The dipolar coupling belonging to the
observed DQ coherence occurs twice in the formula for
effective dipolar coupling, once for each nucleus in the
observed DQ coherence. Similar results have been found
for the excitation behaviour of DQ build-up curves
[26,40,41,28].

Numerical calculations of the spin-dynamics of 2- to 7-
spin systems have been performed including all dipolar
couplings to determine the regime in which the effective
dipolar coupling constant serves as a good approximation.
The dipolar coupling network including all the relative ori-
entations refers to the crystal structure of Ag7P3S11 at
room temperature [42]. The observed spin-pair belongs to
the two inequivalent P-atoms in the P2S7

4� anion. The
effective dipolar coupling constant and the dephasing ratio
is plotted against the dephasing time (see Fig. 3). The effec-
tive dipolar coupling constant, determined from the
dephasing ratio at short dephasing time, correlates very
well with an effective dipolar coupling that was obtained
by summing up the appropriate dipolar couplings as shown
in Eq. (15) (see Fig. 3).

For short dephasing times the effective dipolar coupling
constant is in good agreement with the expected values.
The plots in Fig. 3 indicate that intensity ratios to about
ed from dipolar dephasing ratios; left: effective dipolar coupling constants
, determined from numerically accurate simulations of the spin dynamics;
(15) plotted against the effective dipolar coupling constant meff (simulation)
he spin dynamics; calculations were set up for the 31P spins in crystalline
pole interactions (magnitude and orientation were taken from the crystal
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70% give meaningful effective dipolar coupling constants in
case of crystalline Ag7P3S11. Small differences of 2–3 Hz
can be traced back to the chemical shift offset dependence
of the PostC7 pulse sequence.

These formulas neglect anisotropic J-coupling and
relaxation. The concept of the effective dipolar coupling
also applies to the constant-time version since the dephas-
ing in a multiple-spin system under pulse sequence A (see
Fig. 1) can be described essentially in the same way as in
the case of pulse sequence B.

3.3. DQ dephasing with through-space dipolar coupling

mediated DQ excitation

An interesting aspect of the effective dipolar coupling is
that it is a simple sum of all dipole–dipole couplings of the
two observed spin-1/2 nuclei. The dipole–dipole coupling
between the two observed spin-1/2 nuclei has no extra
impact onto the initial dephasing function as compared
to all the other dipole–dipole couplings. This means that
the requirement for a J-coupling mediated DQ-excitation-
mechanism can be dropped and the through-space cou-
pling can also be used for the conversion of zero-quantum
to double-quantum coherence and vice versa.

A suitable pulse-sequence is described in Fig. 1 (pulse
sequence C). The J-mediated conversion blocks are simply
exchanged by PostC7 blocks. But also any other pulse train
would be possible which would lead to c-encoded DQ exci-
tation via the through-space dipole–dipole coupling. The
constant-time approach and the phase cycling increments
of the individual blocks are identical to those in pulse
sequence A in Fig. 1.

A major difference to the J-mediated double-quantum
dephasing experiment is that the DQ dephasing curve
(see Fig. 2) becomes dependent on the length of the excita-
tion and reconversion times (see sexc and srecon in Fig. 1
pulse sequence C). While the analytical formula for a 2-
spin system becomes slightly more complicated (assump-
tion srecon = sexc)

SCT
DQ stotalð Þ ¼ SDQðs1 ¼ 0; s2 ¼ stotalÞ

SDQðs1 ¼ stotal

2
; s2 ¼ stotal

2
Þ

¼
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2
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ð1

2
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2
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2
ÞÞ sin2 x12j jsexcð Þ
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the analysis of the experimental dephasing ratio in terms of
dipolar coupling constants for a two spin-system (see
Fig. 2) remains the same. This way of conducting a con-
stant-time DQ experiment has the advantage of a more effi-
cient dephasing down to dephasing ratios of about 25%.
Consequently for identical dephasing times stotal for pulse
sequences A and C the dephasing ratio is less effected by
noise in the latter, hence the error of the experimental effec-
tive dipolar coupling is significantly smaller. Explicit for-
mulas for the integrated dephasing curve are given in the
supporting information.
In a multiple spin system n-spin double-quantum coher-
ences have to be taken into account if the conversion times
sexc or srecon become too long. This case might occur if in a
sample both weakly coupled and strongly coupled spin-pairs
are under investigation. Then n-spin double-quantum coher-
ences can cause extra dephasing, such that Eq. (15) for the
effective dipolar coupling of the observed spins is no longer
a good approximation. However for short conversion times
sexc or srecon the analysis of the dephasing behaviour in terms
of an effective dipolar coupling is possible.

3.4. Uniformly isotopically enriched samples

In uniformly isotopically enriched samples the effective
dipolar coupling is a function of the degree of isotopic
enrichment p [43]. Especially in organic compounds the
level of enrichment of 13C, 1H, and 15N can often be con-
trolled experimentally. The level of enrichment p has a
big influence on the effective dipolar coupling constant.
An interesting situation occurs if the through-bond dipolar
coupling is chosen for the excitation of DQ coherence.
Take the example of a partially 13C labelled crystalline ala-
nine sample. The C-atoms belonging to the observed DQ
coherence have to be 13C, but for all other carbon atoms
the chances of being 13C and not 12C are lower and given
by the probability p. Like in a lottery most DQ 13C-atom
spin-pairs will have different patterns of NMR active
neighbouring C-atoms, called configuration, and hence dif-
fering effective dipolar coupling constants. Then the
observed experimental dephasing ratio SCT

DQ is the statistical
average over the individual dephasing ratios of the config-
urations in a powder.

SCT
DQ ¼ lim

n!1

Pn
i SCT

DQðiÞ
n

.

In this complex situation we can again resort to the ini-
tial regime of the DQ dephasing curve. The most important
contribution to the initial part is quadratic in dephasing
time and the effective dipolar coupling constant. An
approximation can be derived for the effective dipolar cou-
pling constant meff (p) of an observed spin-pair in a crystal
with the dipolar coupling constant m12. The two limiting
cases p = 0 and p = 1 refer to the isolated two-spin case
and the effective dipolar coupling constant meff as described
in Eq. (15) for full enrichment, respectively

meffðpÞ � �
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Only the dipolar couplings to spins not belonging to the
observed spin-pair depend on the degree of enrichment p.
The relationship may serve to get an estimate for the error
of m12 in isotopically enriched samples. If samples can be
isotopically enriched such that randomly all positions have
the same degree of enrichment p it is possible to calculate
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the dipolar coupling for the observed spin-pair m12 from the
effective dipolar coupling constants meff(p) at two different
levels of enrichment.

4. Results and discussion

The double-quantum dephasing experiment is yet anoth-
er experiment for measuring homonuclear dipolar
couplings. In contrast to build-up curve based experiments
the idea is to dephase DQ coherence. Like in the REDOR
experiment good signal to noise ratios can be achieved even
for short dephasing times and normalization is feasible.
The DQ evolution time necessary to encode the same dipo-
lar coupling is shorter for DQ dephasing experiments than
for DQ experiments based on build-up curves. In a con-
stant-time DQ dephasing experiment for example at least
1.6 ms total dephasing time are necessary to encode the
P-P distance of the P2S7 group in Ag7P3S11, while in an
experiment based on build-up curves at least 5.6 ms are
necessary [35]. The advantages of DQ dephasing come at
the cost of a slightly longer phase cycle. In ordinary DQ fil-
tered experiments a phase cycle with 12 steps has to be
completed to select a coherence order pathway of
0 fi ±2 fi 0 fi �1. In constant time DQ-dephasing exper-
iments 36 steps are necessary.

In the short dephasing time limit it is possible to analyze
the behaviour of multiple-spin systems. The effective dipo-
lar coupling as defined in Eq. (15) is an approximation for
the initial part of the DQ dephasing curve in multiple spin
systems and needs to be validated against experimental evi-
dence. In Fig. 4 the experimental value of the effective dipo-
lar coupling is shown as a function of dephasing time for
the 31P resonances of the P2S7-group in crystalline
Ag7P3S11. As a theoretical reference serve the spin-pair
dipolar coupling constant of the P-atoms in the P2S7-group
and the corresponding effective dipolar coupling constant
meff as calculated from the crystal structure (dashed and sol-
id horizontal lines in Fig. 4).

Random errors of the effective dipolar couplings were
determined from the approximated error of experimental
Fig. 4. Experimental values of the effective dipolar coupling as a function of de
data were acquired at a sample rotation frequency of 10 kHz; left: simple depha
excitation and reconversion (pulse sequence A in Fig. 1, sJ

DQ ¼ 20 ms), consta
reconversion (pulse sequence C in Fig. 1, srecon = sexc = 1.6 ms); the dashed hori
in the P2S7 group and solid horizontal lines to the effective dipolar coupling co
crystal.
DQ-filtered intensities via error propagation. A small ran-
dom error in intensity results in a big random error for the
first data points. However already with about 1 ms of
dephasing time the random errors become tolerable in
the case of Ag7P3S11.

The three dephasing curves in Fig. 4 allow a comparison
of the three pulse sequences in Fig. 1. For the simple DQ-
dephasing sequence (pulse sequence B, Fig. 1) a systematic
deviation of almost 200 Hz can be observed, while for both
constant-versions of the DQ-dephasing experiments (pulse
sequences A and C, Fig. 1) the experimental values agree
with the theoretical predictions within experimental error.
For the latter this corresponds to dephasing ratios down
to 78% and 65%, respectively. This indicates that the aniso-
tropic J-coupling constant is much smaller than the
through space dipolar coupling. The better overlap
between experimental and predicted values indicates that
constant-time sampling efficiently removes relaxation and
experimental deficiencies of the simple dephasing experi-
ment (pulse sequence B). For the case of Ag7P3S11 the
approximations in theory seem to be valid, since the effec-
tive dipolar couplings agree to the predicted effective dipo-
lar couplings up to dephasing times s = 2.5 ms. The
experimental conditions described for Ag7P3S11 should be
relevant for ordinary oxidic diphosphates.

DQ-dephasing can be implemented in a two-dimen-
sional experiment by inserting an evolution time
between the second block of DQ dephasing and DQ
reconversion, which results in a 2D double-quantum sin-
gle-quantum correlation spectrum after a 2D Fourier-
transformation. This adds the resolution power of a
2D experiment to the distance determination capabilities
of the constant-time DQ-dephasing experiment. If the
observed DQ coherences represent similar internuclear
distances, two 2D spectra, that are acquired with the
dephasing times chosen as detailed above, are sufficient
to determine the complete set of dipolar coupling con-
stants or the effective dipolar coupling constants, respec-
tively. In Fig. 5 a 13C NMR 2D DQ-dephasing
spectrum is shown for crystalline [13C3]alanine with a
    

phasing time for the 31P DQ coherence for phosphorus atoms in P2S7, the
sing (pulse sequence B in Fig. 1), constant-time DoDe using J-couplings for
nt-time DoDe using the direct dipole–dipole coupling for excitation and
zontal lines refer to the dipolar coupling constant between the two P-atoms
nstant referring to the dipolar interactions of all P-atoms in the Ag7P3S11



Table 1
Dipolar coupling constants: effective dipolar coupling constants meff

calculated from the crystal structures [50,51], experimental values mexp

and for comparison the dipolar coupling constants mdip for a given spin-
pair; the experimental values refer to pulse sequence A in Fig. 1

Compound Atoms meff (Hz) mdip (Hz) mexp (kHz)

Ag7P3S11 P2S7
4� �545 �436 �0.535

Alanine 13Ca–
13Cb �2674 �2147 �2.5

13Ca–
13Ccarboxyl �2661 �2117 �2.61

DQ

SQ

200 150 100 50 0 –50
ppm

0
H

z
36

25
–3

62
5

Fig. 5. Double-quantum filtered 2D correlation spectrum of [13C3]alanine
acquired with a DoDe pulse sequence (pulse sequence B in Fig. 1); no
distortions of the line shape were observed; total dephasing time
stotal = 551.72 ls, sJ

DQ ¼ 1517:24 ls, mr = 7250 Hz.
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total dephasing time stotal of 551.72 ls. Experimental
values of the effective dipolar couplings for the observed
13C DQ spin-pairs are shown in comparison with the
predicted values in Table 1. Experimental and predicted
values agree reasonably well. The experiment could
probably be improved either by using DQ no-decou-
pling pulse sequences [44,45] or by more efficient decou-
pling schemes [46]. The 2D DQ dephasing experiment
might be interesting for applications in amorphous
materials in terms of distance distribution functions.

5. Experimental section

The 13C and 31P NMR experiments were carried out on
a Varian Infinity+ NMR spectrometer equipped with a
commercial 2.5 mm double-resonance MAS-NMR probe.
The magnetic field strength was 9.4 T corresponding to res-
onance frequencies of m (31P) = 161.4 MHz and
m(13C) = 100.9 MHz. Samples were rotated within zirconia
spinners. By means of appropriate spacers, the sample was
confined to the middle 1/3 of the rotor volume. A commer-
cially available pneumatic control unit was used to limit
MAS frequency variations to a 2 Hz interval for the dura-
tion of the experiment. For crystalline Ag7P3S11 the spin-
ning frequency mr was set to 10 kHz and for alanine to
7250 Hz, respectively. During the PostC7 sequence this
required pulse nutation frequencies of 70 and 50.75 kHz,
respectively. A saturation comb was used to erase the phase
memory of the spins, since for both samples the repetition
times were too short with respect to spin–lattice relaxation
times. The saturation comb was used in front of every scan
and typically consisted of 10–20 pulses with a 90� flip-angle
and a delay of typically 50 ms.

The numerical simulations of the spin-dynamics were
done using the SIMPSON NMR interpreter published by
Nielsen and co-workers [47]. Powder averages were chosen
according to the Zaremba–Conroy–Wolfsberg scheme [48]
with a number of orientations of 1760 (88 a-, b-angle-
pairs · 20 c-angles) or better. The integration time step
for the DQ simulations was chosen as 1/10th of the shortest
RF-unit in the sequence.

6. Conclusions

In this contribution a new pulse sequence (Double-
Quantum Dephasing, DoDe) is described which is useful
for the determination of homonuclear dipolar interaction
of spin-1/2 nuclei. It is suitable both for diluted and dense
multiple-spin systems and relies on the dephasing of dou-
ble-quantum coherence. Normalization and relaxation
problems can be minimized by the use of a constant-time
sampling method of the dephasing curve. In multiple-spin
systems the initial part of the DQ dephasing curve was
shown to be sensitive to lattice sums of dipolar coupling
constants.

For a single distance-determination DoDe requires
only two experimental data points. Together with a 2D
protocol it was shown that this feature can be used to
measure a set of dipolar interactions from two separate
2D experiments. In terms of signal to noise DoDe exper-
iments profit from the idea of dephasing which improves
signal to noise ratios. At the same time the total number
of experiments for a single distance is of the same order
or even shorter than for ordinary DQ build-up techniques.

DoDe experiments will be useful in the characterization
of amorphous samples because distributions of dipolar
interactions can be extracted from 2D DoDe spectra. In this
context the signal to noise ratio might further be improved
by combing DoDe with the refocused INADEQUATE
[31,49] experiment and if feasible cross-polarization. DoDe
experiments are also ideally suited to help in the assignment
of 31P resonances in phosphates via the effective dipolar
coupling constant.
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